Monday 9 June 2014 - Morning GCSE MATHEMATICS A

A502/02 Unit B (Higher Tier)

Candidates answer on the Question Paper.

OCR supplied materials:
Duration: 1 hour
None
Other materials required:

- Geometrical instruments
- Tracing paper (optional)

Candidate forename		Candidate surname				
Centre number						Candidate number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Your quality of written communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 60.
- This document consists of 16 pages. Any blank pages are indicated.

Formulae Sheet: Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

In any triangle $A B C$
Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$,
where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Answer all the questions.
1 Julie asked three of her friends to estimate how much of the time it rained during their holidays. Their holidays were all the same length of time.

Eliot	40% of the time
Harpreet	$\frac{5}{12}$ of the time
Megan	$\frac{3}{8}$ of the time

Put these estimates in order, starting with the smallest.
You must show your method clearly.

2 This empty container is filled with water at a constant rate.

The graph of depth of water against time looks like this.

Four more empty containers are shown below.
Each of these containers is filled with water at a constant rate.

A

B

C

D

Choose which of these containers matches each of the graphs.
(a)

(a) Container
(b)

(b) Container.. [1]
(c)

(c) Container.
$3 \quad A B C D$ is a quadrilateral.
$B A$ is parallel to CDE.
Angle h is not equal to 126°.

(a) What is the mathematical name for quadrilateral ABCD?

(a)

(b) Find the size of angle f.

Give a geometrical reason for your answer.
$f=$ \qquad ${ }^{\circ}$ because \qquad
(c) Angle h is 4 times the size of angle g.

Work out the size of angle h.

4 You are given that $411 \times 32=13152$.
Use this information to work out the answer to each of the following.
(a) 4110×320
\qquad
(a)
(b) 4.11×320
(b) .. [1]
[1]
(c) $13.152 \div 32$
(c)

5 (a) Describe the correlation shown in each of these scatter graphs. If appropriate, also describe the strength of the correlation.

(b) A student measures the reaction time for each of ten people of different ages. The results are given in this table.

Age (years)	8	16	20	27	35	44	56	65	70	79
Reaction time (seconds)	0.44	0.34	0.28	0.28	0.27	0.30	0.28	0.34	0.38	0.40

The results are plotted on a scatter graph.

(i) Complete the scatter graph.

The first six results have been plotted for you.
(ii) Why is it not sensible to draw a line of best fit?
\qquad
\qquad
(iii) Describe the relationship between age and reaction time shown by your graph.
\qquad
\qquad

6 (a) Solve this inequality.

$$
3 y-11>25
$$

(a)
(b) Find all the integer values of w that satisfy this inequality.

$$
9<3 w<20
$$

(b)
$7 \quad$ Shape \mathbf{S} is shown on the grid.

(a) Rotate shape \mathbf{S} through 90° clockwise about (2,0). Label your image \mathbf{R}.
(b) Enlarge shape \mathbf{S} with scale factor -2 and centre (0,0). Label your image \mathbf{E}.

8* $A B C D$ and PQRS are mathematically similar.

Calculate lengths x and y.
[5]

9 A line, L, has equation $y=4 x-5$.
(a) Write down the gradient of line L.
(a)
(b) What are the coordinates of the point where line L crosses the y-axis?
(b)
[1]
(c) Write down the equation of the line parallel to line L that passes through $(0,0)$.
(c)
[2]
(d) Explain how you can tell that the line $y=\frac{-1}{5} x-5$ is not perpendicular to line L.

10 Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
& x+3 y=14 \\
& 2 x+y=3
\end{aligned}
$$

\qquad

11 (a) Write $\frac{5}{9}$ as a recurring decimal.
(a)
[1]
(b) Marco used his calculator to divide a 2-digit number by a 2-digit number. His calculator showed this display.

2.030303030

What calculation did Marco do?
(b)

12 The graphs of $x+y=6, y=3 x+1$ and $x+2 y=6$ are shown below.

Use the graphs to solve these pairs of simultaneous equations.
(a)

$$
\begin{aligned}
y & =3 x+1 \\
x+2 y & =6
\end{aligned}
$$

(a) $x=$ \qquad

$$
y=
$$

(b) $\begin{aligned} y & =3 x+1 \\ 2 x+2 y & =12\end{aligned}$
(b) $x=$
$y=$
[2]
$13 \mathrm{~B} 0, \mathrm{~B} 1, \mathrm{~B} 2, \ldots ., \mathrm{B} 10$ are labels given to different sized sheets of paper. The lengths of the sheets are related as follows:

$$
\text { Length of B10 } \times \sqrt{2}=\text { Length of B9 }
$$

Length of B9 $\times \sqrt{2}=$ Length of B8

and so on from B10, the smallest size, up to B0 the largest size.
(a) The length of B7 paper is 125 mm .
(i) What is the exact length of $B 6$ paper?
\qquad
(ii) What is the length of B5 paper? Give your answer in its simplest form.
(ii)
mm [2]
(b) The length of B 1 paper is 1000 mm .

Find the length of B2 paper.
Give your answer in the form $k \sqrt{2}$, where k is an integer.
(b) \qquad

